Perbandingan Trigonometri pada Segitiga Siku-Siku

         Perbandingan Trigonometri pada Segitiga Siku-Siku merupakan salah satu cara dalam mendeskripsikan nilai perbandingan trigonometri. Perbandingan trigonometri ada beberapa jenis yaitu sin, cos, tan, secan (sec), cossec (csc), dan cotangen (cot). Karena perbandingan trigonometri melibatkan sudut-sudut, silahkan juga baca materi “Ukuran Sudut : Derajat, Radian, dan Putaran“.

Perbandingan Trigonometri pada Segitiga Siku-Siku

       Perhatikan segitiga siku-siku berikut,

Berikut Perbandingan Trigonometrinya :
*). $ sin A = frac{sisi depan}{sisi miring} = frac{de}{mi} = frac{BC}{BA} = frac{a}{c} $
*). $ cos A = frac{sisi samping}{sisi miring} = frac{sa}{mi} = frac{CA}{BA} = frac{b}{c} $
*). $ tan A = frac{sisi depan}{sisi samping} = frac{de}{sa} = frac{BC}{CA} = frac{a}{b} $
*). $ sec A = frac{1}{cos A} = frac{1}{frac{b}{c}} = frac{c}{b} $
*). $ csc A = frac{1}{sin A} = frac{1}{frac{a}{c}} = frac{c}{a} $
*). $ cot A = frac{1}{tan A} = frac{1}{frac{a}{b}} = frac{b}{a} $
*). $ tan A = frac{a}{b} = frac{frac{a}{c}}{frac{b}{c}} = frac{sin A }{cos A } rightarrow tan A = frac{sin A }{cos A } $
*). $ cot A = frac{1}{tan A} = frac{1}{frac{sin A }{cos A }} = frac{cos A}{sin A } rightarrow cot A = frac{cos A}{sin A } $

Contoh :
1). Diberikan segitiga siku-siku ABC, siku-siku di B. Jika panjang sisi AB = 3 satuan, BC = 4 satuan, tentukanlah sin A, cos C, dan tan A. ?
Penyelesaian :
*). Deskripsi gambarnya,
Untuk segitiga di bawah ini, dengan Teorema Phytagoras diperoleh panjang sisi AC = 5 satuan.

*). Menentukan nilai perbandingan trigonometrinya
$ begin{align} sin A & = frac{de}{mi} = frac{BC}{CA} = frac{4}{5} \ cos A & = frac{sa}{mi} = frac{AB}{CA} = frac{3}{5} \ tan A & = frac{de}{sa} = frac{BC}{AB} = frac{4}{3} end{align} $

2). Di bawah ini diberikan tiga segitiga siku-siku, diketahui $ cos theta = frac{3}{5} $ . Tentukanlah nilai $ x $. ?

Penyelesaian :
a). Dari gambar (a),
$ begin{align} cos theta & = frac{sa}{mi} \ cos theta & = frac{x}{8} \ frac{3}{5} & = frac{x}{8} \ x & = frac{24}{5} end{align} $

b). Menentukan nilai $ sin theta $ pada segitiga gambar (b).
diketahui nilai $ cos theta = frac{3}{5} = frac{sa}{mi} , , $ berdasarkan pythagoras, diperoleh nilai depannya yaitu 4, sehingga nilai $ sin theta = frac{de}{mi} = frac{4}{5} $
*). Menentukan nilai $ x $.
$ begin{align} sin theta & = frac{de}{mi} \ sin theta & = frac{x}{4} \ frac{4}{5} & = frac{x}{4} \ x & = frac{16}{5} end{align} $

Baca juga  Ukuran Sudut - Derajat, Radian, dan Putaran

3). Diketahui $ sin x + cos x = 3 , $ dan $ tan x = 1 $ , tentukanlah nilai $sin x $ dan $ cos x $!
Penyelesaian :
*). Bentuk : $ tan x = 2 rightarrow frac{sin x }{cos x} = 2 rightarrow sin x = 2cos x $
*). Substitusi $ sin x = 2cos x $ ke persamaan $ sin x + cos x = 3 $
$ begin{align} sin x = 2cos x rightarrow sin x + cos x & = 3 \ 2cos x + cos x & = 3 \ 3cos x & = 3 \ cos x & = 1 end{align} $
Sehingga nilai $ sin x = 2cos x = 2 . 1 = 2 $
Jadi, diperoleh nilai $ sin x = 2 , $ dan $ cos x = 1 $

Identitas Trigonometri

       Perhatikan segitiga siku-siku berikut,

Perbandingan trigonometri yang berlaku adalah :
$ sin A = frac{y}{r}, , cos A = frac{x}{r}, , tan A = frac{y}{x}, $
$ sec A = frac{r}{x}, , csc A = frac{r}{y}, , cot A = frac{x}{y} $
Dari segitiga siku-siku di atas, berlaku teorema pythagoras, yaitu :
$ x^2 + y^2 = r^2 , $ ………..pers(i)
*). pers(i) dibagi dengan $ r^2 $
$ begin{align} x^2 + y^2 & = r^2 \ frac{x^2}{r^2} + frac{y^2}{r^2} & = frac{r^2}{r^2} \ left( frac{x}{r} right)^2 + left( frac{y}{r} right)^2 & = 1 \ left( cos A right)^2 + left( sin A right)^2 & = 1 \ cos ^2 A + sin ^2 A & = 1 end{align} $
Persamaan $ cos ^2 A + sin ^2 A = 1 , $ inilah yang disebut sebagai identitas trigonometri.
**). pers(i) dibagi dengan $ x^2 $
$ begin{align} x^2 + y^2 & = r^2 \ frac{x^2}{x^2} + frac{y^2}{x^2} & = frac{r^2}{x^2} \ 1 + left( frac{y}{x} right)^2 & = left( frac{r}{x} right)^2 \ 1 + left( tan A right)^2 & = left( sec A right)^2 \ 1 + tan ^2 A & = sec ^2 A end{align} $
**). pers(i) dibagi dengan $ y^2 $
$ begin{align} x^2 + y^2 & = r^2 \ frac{x^2}{y^2} + frac{y^2}{y^2} & = frac{r^2}{y^2} \ left( frac{x}{y} right)^2 + 1 & = left( frac{r}{y} right)^2 \ left( cot A right)^2 + 1 & = left( csc A right)^2 \ cot ^2 A + 1 & = csc ^2 A end{align} $

Jadi, diperoleh kumpulan persamaan identitas trigonometri, yaitu :
$ begin{align} cos ^2 A + sin ^2 A & = 1 \ 1 + tan ^2 A & = sec ^2 A \ cot ^2 A + 1 & = csc ^2 A end{align} $

Contoh :
Jika diketahui nilai $ sin A = x, , $ tentukan nilai $ cos A , , tan A, , sec A, , $ dan $ csc A , , $ dimana sudut A adalah sudut lancip (semua nilai trigonometrinya positif).!
Penyelesaian :
Sebenarnya ada dua cara untuk menyelesaikan soal ini, yaitu dengan menggambar segitiganya atau dengan menggunakan persamaan identitas trigonometri.
Cara I : Menggunakan persamaan identitas trigonometri.
Persamaan identitas trigonometri dan diketahui nilai $ sin A = x $
$ begin{align} cos ^2 A + sin ^2 A & = 1 \ cos ^2 A + x^2 & = 1 \ cos ^2 A & = 1 – x^2 \ cos A & = sqrt{1-x^2} end{align} $
*). Sehingga nilai trigonometri yang lainnya :
$ begin{align} tan A & = frac{sin A }{cos A} = frac{x}{sqrt{1-x^2}} \ sec A & = frac{1}{cos A } = frac{1}{sqrt{1-x^2}} \ csc A & = frac{1}{sin A } = frac{1}{x} \ cot A & = frac{cos A}{sin A } = frac{sqrt{1-x^2}}{x} end{align} $

Baca juga  Contoh Soal dan Penyelesaian Rumus Penjumlahan Trigonometri

Cara II : Menggunakan segitiga siku-siku :
*). Diketahui nilai $ sin A = x rightarrow sin A = frac{de}{mi} = frac{x}{1} $
Artinya nilai sisi depan $ x , $ dan sisi miring $ a , $ , berdasarkan pythagoras diperoleh sisi sampingnya $ sqrt{1-x^2} $ .
*). ilustrasi gambarnya :

*). Menentukan nilai trigonometrinya dari segitiga siku-siku
$ begin{align} cos A & = frac{sa}{mi} = frac{sqrt{1-x^2}}{1} = sqrt{1-x^2} \ tan A & = frac{de }{sa} = frac{x}{sqrt{1-x^2}} \ sec A & = frac{1}{cos A } = frac{1}{sqrt{1-x^2}} \ csc A & = frac{1}{sin A } = frac{1}{x} \ cot A & = frac{sa}{de } = frac{sqrt{1-x^2}}{x} end{align} $

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *